The bilinear Hilbert transform acting on Hermite and Laguerre functions
نویسنده
چکیده
We obtain several formulas for the action of the bilinear Hilbert transform on pairs of Hermite and Laguerre functions. The result can be expressed as a linear combination of products of Hermite or Laguerre functions.
منابع مشابه
The Heisenberg Group Fourier Transform
1. Fourier transform on Rn 1 2. Fourier analysis on the Heisenberg group 2 2.1. Representations of the Heisenberg group 2 2.2. Group Fourier transform 3 2.3. Convolution and twisted convolution 5 3. Hermite and Laguerre functions 6 3.1. Hermite polynomials 6 3.2. Laguerre polynomials 9 3.3. Special Hermite functions 9 4. Group Fourier transform of radial functions on the Heisenberg group 12 Ref...
متن کاملThe Hilbert Transform Ofthe Generalized Laguerre and Hermiteweight Functions
Explicit formulae are given for the Hilbert transform Z R ? w(t)dt=(t ? x), where w is either the generalized Laguerre weight function w(t) = 0 if t 0, w(t) = t e ?t if 0 < t < 1, and > ?1, x > 0, or the Hermite weight function w(t) = e ?t 2 , ?1 < t < 1, and ?1 < x < 1. Furthermore, numerical methods of evaluation are discussed based on recursion, contour integration and saddle-point asymptoti...
متن کاملDistributional Estimates for the Bilinear Hilbert Transform
We obtain size estimates for the distribution function of the bilinear Hilbert transform acting on a pair of characteristic functions of sets of finite measure, that yield exponential decay at infinity and blowup near zero to the power −2/3 (modulo some logarithmic factors). These results yield all known L bounds for the bilinear Hilbert transform and provide new restricted weak type endpoint e...
متن کاملQuadrature formulas for integrals transforms generated by orthogonal polynomials
By using the three-term recurrence equation satisfied by a family of orthogonal polynomials, the Christoffel-Darboux-type bilinear generating function and their asymptotic expressions, we obtain quadrature formulas for integral transforms generated by the classical orthogonal polynomials. These integral transforms, related to the so-called Poisson integrals, correspond to a modified Fourier Tra...
متن کاملA New Way of Looking at Distributional Estimates; Applications for the Bilinear Hilbert Transform
Distributional estimates for the Carleson operator acting on characteristic functions of measurable sets of finite measure were obtained by Hunt [12]. In this article we describe a simple method that yields such estimates for general operators acting on one or more functions. As an application we discuss how distributional estimates are obtained for the linear and bilinear Hilbert transform. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 162 شماره
صفحات -
تاریخ انتشار 2010